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Abstract

The rationale for designing atmospheric numerical model dynamical cores with certain conservation properties is
reviewed. The conceptual difficulties associated with the multiscale nature of realistic atmospheric flow, and its lack of
time-reversibility, are highlighted. A distinction is made between robust invariants, which are conserved or nearly con-
served in the adiabatic and frictionless limit, and non-robust invariants, which are not conserved in the limit even though
they are conserved by exactly adiabatic frictionless flow. For non-robust invariants, a further distinction is made between
processes that directly transfer some quantity from large to small scales, and processes involving a cascade through a con-
tinuous range of scales; such cascades may either be explicitly parameterized, or handled implicitly by the dynamical core
numerics, accepting the implied non-conservation. An attempt is made to estimate the relative importance of different con-
servation laws. It is argued that satisfactory model performance requires spurious sources of a conservable quantity to be
much smaller than any true physical sources; for several conservable quantities the magnitudes of the physical sources are
estimated in order to provide benchmarks against which any spurious sources may be measured.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The formulation of a numerical model of the atmosphere is usually considered to be made up of a dynam-
ical core, and some parameterizations. Roughly speaking, the dynamical core solves the governing fluid and
thermodynamic equations on resolved scales, while the parameterizations represent subgrid scale processes
and other processes not included in the dynamical core such as radiative transfer. Here, no attempt is made
to give a precise definition of ‘dynamical core’ because, as discussed below, there are some open questions con-
cerning exactly which terms and which processes should be included in a dynamical core.

It is usually taken for granted that it is beneficial for a dynamical core to possess discrete analogues of the
conservation properties of the continuous adiabatic frictionless governing equations. However, these contin-
uous equations possess an infinite number of conserved quantities (see Section 2), whereas a numerical model
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can have only a small finite number of analogous properties. Therefore, in the design of a numerical scheme,
some choice must be made as to which conservation properties are most desirable. In addition, other possible
properties of a numerical scheme, such as good wave dispersion properties, smooth behaviour near the grid
scale, or computational efficiency, might be incompatible with certain conservation properties, and some deci-
sion must be made about their relative importance. This paper reviews some of the issues related to conser-
vation in order to gain some understanding of why conservation properties are important (Section 3), and
hence to help decide which conservation properties are most important, and whether discrete conservation
properties should take priority over other desirable properties. The focus is on the context of numerical
weather prediction and climate models; the issues may be rather different for models simulating much smaller
scales.

An important set of questions concerns how accurately a dynamical core needs to capture various conser-
vation properties. Is global conservation sufficient or is satisfaction of a local conservation law essential? Is a
conservative spatial discretization sufficient, or must the full space–time discretization be conservative? In Sec-
tion 3 it is argued that we can expect accurate solutions provided the timescale for any spurious numerical
sources is long compared to the timescale for true physical sources. In Sections 4–9 the physical sources for
various conservable quantities are estimated in order to provide benchmarks against which spurious sources
may be compared.

The starting point for the consideration of conservation issues is often the adiabatic frictionless governing
equations, which have a number of conservation properties (see Section 2), and are time-reversible. However,
realistic solutions of those equations lead to flows in which some non-conservation, often due to small-scale
mixing, would be inevitable for any values of viscosity and diffusivity no matter how small. For example, lay-
erwise two-dimensional turbulence involves a transfer to small scales and inevitable non-conservation of
potential enstrophy, while vertical propagation of gravity waves leads to wave breaking and inevitable
small-scale vertical mixing. Therefore, certain quantities that are conserved by truly adiabatic frictionless flow
will not be conserved in the adiabatic frictionless limit. The conservation of such quantities is thus non-robust,
and the adiabatic frictionless limit is not time-reversible. This suggests that dynamical cores need not, and per-
haps should not, be time-reversible.

A related set of issues arises because of the strongly multiscale nature of realistic atmospheric flows, so that
some flow features are inevitably below the resolution of a given numerical model. First, some conservable
quantities, such as tracer variance (Section 6) and energy (Section 7), have contributions from unresolved
scales; design of a numerical model to conserve just the resolved contribution therefore requires careful justi-
fication. Second, some decision must be made about exactly which equation set the dynamical core is supposed
to solve. Large-eddy simulation, for example, is based on equations that explicitly average out unresolvable
scales (e.g. [44]). Dynamical cores for large-scale atmospheric models should also be thought of as solving
averaged equation sets, though this is rarely made explicit. Which conservation properties survive the averag-
ing, if any, will depend on the type of averaging (Eulerian or Lagrangian, mass-weighted or not, etc.), but little
work appears to have been done to address this last question.

One must also decide, particularly for non-robust invariants, whether only resolved scales are to be handled
by the dynamical core, with all unresolved scales and downscale transfer processes handled by parameteriza-
tions or subgrid models, or whether some contributions from unresolved scales and downscale transfer pro-
cesses are to be handled by the dynamical core. Here we make a distinction between two classes of downscale
transfer process.

(i) Processes in which there is a transfer directly from large scales to small scales, missing out a range of
intermediate scales that includes the model truncation scale. An example is boundary layer turbulence,
which directly transfers energy from the large-scale flow to small-scale boundary layer eddies. Such pro-
cesses must always be parameterized in practice.

(ii) Processes involving a downscale transfer or ‘‘cascade’’ across a continuous range of scales that includes
the model truncation scale. An example is the downscale cascade of tracer variance due to advective
straining by the large-scale flow. For these class (ii) processes it appears we have a choice either to
parameterize or to allow the dynamical core numerics to handle the resolved-scale to unresolved-scale
transfers (Section 6).
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The use of scale-selective dissipation in numerical models is relevant to this last point. All numerical models
of the atmosphere include some form of scale-selective dissipation, either explicitly specified or inherent in the
numerical schemes used. It serves a variety of purposes, including cleaning up noise generated by dispersion
errors, computational modes, and physical parameterizations, crudely representing subgrid Reynolds stresses,
and soaking up tracer variance and potential enstrophy that cascade downscale to prevent spectral blocking
(see Section 6). Even if the scale-selective dissipation is switchable it is usual to include it, even in nominally
adiabatic frictionless integrations, since without it models behave badly. Thus it is reasonable to consider the
scale-selective dissipation to be an essential part of the dynamical core [71]. Any claim about the conservation
properties of a dynamical core should take into account the scale-selective dissipation needed to integrate the
dynamical core in practice.

Finally, although it is well known that a numerical model can possess only a finite number of independent
conserved quantities, it appears to be rather poorly understood exactly how many and what combinations of
conserved quantities are possible. Some comments are made on this question in Section 10.

2. Quantities conserved by the adiabatic frictionless governing equations

For adiabatic frictionless flow, in the absence of condensation and evaporation and chemical sources and
sinks, the equation sets normally used as the basis for atmospheric modelling have a number of local, flux-
form conservation laws of the form
oA
ot
þr � F ¼ 0; ð1Þ
where A is the density of the conserved quantity and F is the flux.

(1) Mass: A = q and F = qu = uA, where q is the air density and u is the three-dimensional air velocity.
(2) Angular momentum: A ¼ qbz � ½r� ðuþX� rÞ� and F ¼ uAþ pbz � r, where X is the Earth’s rotation

vector, bz is a unit vector in the same direction, r is the position vector relative to the origin at the centre
of the Earth, and p is the pressure.

(3) Energy: A ¼ qð1
2
u2 þ cvT þ UÞ and F ¼ quð1

2
u2 þ cpT þ UÞ ¼ uðAþ pÞ, where T is temperature, p is pres-

sure, cv and cp are the specific heat capacities at constant volume and constant pressure respectively, and
U is the geopotential.

(4) Potential temperature: A = qf(h) and F = quf(h) = uA, for any function f of the potential temperature h.
This includes the specific entropy f(h) = g = cp lnh.

(5) Potential vorticity (PV): A = qg(Q) and F = qug(Q) = uA, for any function g of the potential vorticity
Q = f Æ $f(h)/q, where f is the absolute vorticity vector and again f is any function of the potential tem-
perature. Of particular interest is g(Q) = Q2/2; A is then the density of potential enstrophy.

(6) Tracer: A = qh(v) and F = quh(v) = uA, where v is the tracer mass mixing ratio and h is any function of
v. This applies in particular to water vapour in the absence of condensation and evaporation.

By integrating the local flux-form conservation law (1) over the entire domain, with suitable boundary condi-
tions, it follows that the global integral of each of these quantities is invariant. Note that the conservation laws for
potential temperature, PV, and tracer each imply an infinite number of global invariants. The global invariants
corresponding to the arbitrary functions of potential temperature and PV are known as Casimirs (e.g. [56]).

The conservation laws for potential temperature, PV, and tracer can be combined with conservation of
mass to obtain Lagrangian conservation laws:
Df ðhÞ
Dt

¼ 0; ð2Þ

DgðQÞ
Dt

¼ 0; ð3Þ

DhðvÞ
Dt

¼ 0: ð4Þ
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The conservation laws for mass and potential temperature together imply that the global integral over any
isentropic surface of the mass per unit h,
FðhÞ ¼
Z

q
jrhj dA; ð5Þ
is conserved, and the conservation laws for mass, potential temperature and PV together imply thatR
qgðQÞ=jrhjdA over any isentropic surface is also conserved. (Note here dA is the element of area of the sur-

face, not its horizontal projection.) Moreover, conservation of mass, potential temperature and PV imply that,
for any material contour C lying on an isentropic surface bounding a region D, the mass per unit h within the
contour M ¼

R
D q=jrhjdA and the absolute circulation around the contour C ¼

H
Cua � dr ¼

R
D qQ=jrhjdA;

where ua is the absolute velocity, are both conserved (e.g. [56]). In particular, since PV is materially conserved,
C may be a PV contour. In this case the distributions of MðQÞ and CðQÞ are related by
oC

oQ
¼ Q

oM

oQ
; ð6Þ
(irrespective of whether MðQÞ and CðQÞ are conserved [63]), so that in fact MðQÞ and CðQÞ are not
independent.

For a Hamiltonian system, such as the equations describing adiabatic frictionless atmospheric dynamics,
Noether’s theorem relates conservation properties to symmetries of the Hamiltonian such as invariance under
rotation or time translation (e.g. [56]). When considering disturbances to a basic state that has some symmetry
(e.g. zonal symmetry or steadiness), Noether’s theorem implies that certain measures of wave activity (e.g.
pseudomomentum or pseudoenergy) satisfy conservation laws (e.g. [1,29,56]). The conservation laws can be
explicitly constructed by combining the conservation laws for angular momentum or energy with those for
the Casimirs (e.g. [47,29]); in particular, the pseudomomentum can be expressed partly in terms of MðQÞ
and CðQÞ [63]. However, despite their obvious dynamical importance, such conservation laws do not appear
to have been used as criteria in the development of numerical models.

The expressions for conserved quantities listed above are valid for the deep atmosphere compressible Euler
equations (though with the approximation that U is spherically symmetric so that r · $U can be taken as zero).
When further approximations are made to the governing equations, it is nearly always considered desirable to
retain analogous conservation properties in the approximate equations, though the expressions for the con-
served quantities and their fluxes must be modified appropriately (e.g. [70]). Retaining conservation properties
in approximate equation sets can be guaranteed by deriving them from a Hamiltonian that has been approx-
imated in such a way as to retain the corresponding symmetry (e.g. [56]). However, it should be noted that
retaining conservation properties in approximate equation sets might not always be appropriate. For example,
if there were a significant systematic transfer of energy from balanced vortical motion to gravity wave motion
then conserving energy in an approximate equation set that describes only the balanced component of the flow
could be inappropriate (e.g. [46]).
3. Why is conservation desirable in a numerical model, and how well do we need to conserve?

There are a few general reasons why it may be desirable for a numerical model to possess discrete analogues
of conservation laws:

(1) Solutions of the equations describing atmospheric dynamics are in general extremely complicated, and
there are very few exact analytical statements we can make about them. We should, at least, try to cap-
ture those analytical properties that we do know for certain, such as the conservation properties.

(2) The accuracy of certain aspects of a numerical simulation can be closely tied to conservation properties.
In the simple case of Burgers equation, for example, conservation of ‘‘momentum’’ is crucial to capture
accurately the speed of any shock that forms (e.g. [38]). For full atmospheric models it has been argued
that conservation of energy and enstrophy is important for accurately capturing nonlinear transfers to
small scales (e.g. [54,2]). Also, it has been argued [17] that the accuracy of semi-Lagrangian schemes
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could be improved if trajectories were constrained to be consistent with the mass continuity equation.
These examples all argue for the satisfaction of a local flux-form conservation law, not merely global
conservation.

(3) Some early attempts to model atmospheric dynamics suffered from problems of instability, particularly
nonlinear instability, in which nonlinear interactions near the grid scale lead to aliasing and an amplifi-
cation of the total energy (e.g. [2]). Ensuring conservation of energy, and perhaps potential enstrophy,
can help to suppress such instability. (However, the energy-conserving centred-difference spatial discret-
ization for Burgers equation in one dimension demonstrates that energy conservation alone does not
prevent the build-up of grid-scale oscillations, even though it prevents the unbounded growth of energy
associated with nonlinear instability, e.g. [21].)

(4) There is currently no existence proof for solutions to the compressible Euler equations for finite times,
though such proofs do exist for some approximate equation sets valid in certain asymptotic limits. Cul-
len [15] argues that those properties of the equations that are crucial for the existence proofs are also
crucial for controlling the dynamics, and are therefore the properties that need to be captured by numer-
ical methods. Cullen discusses these ideas in detail and gives several examples, including mass conserva-
tion, and boundedness under advection of materially conserved quantities such as potential temperature
and potential vorticity.

(5) Each conservation property that can be enforced reduces by one the dimension of the manifold that the
solution is constrained to follow. This might seem like a relatively small benefit for a numerical weather
prediction model with O(107) degrees of freedom. However, if the constraints are physically important
then the benefit is likely to be greater.

(6) Exact satisfaction of a discrete conservation law allows the diagnosis of a closed budget for the con-
served quantity. This can be especially important when that particular budget is the subject of scientific
interest.

(7) If a numerical scheme is formally exactly conserving then checking conservation in practice can be valu-
able for debugging.

Beyond these general considerations, we need some rationale for deciding which particular conservation
properties are most important, and how accurately they need to be respected in models. One possible frame-
work for addressing these issues is the following. In the real atmosphere all conservable quantities have
sources and sinks, and the value of the conservable quantity will be determined by the balance between its
sources and sinks. Hence, the errors that arise from imperfect conservation in a dynamical core will depend
on the magnitude of the imperfection in conservation compared to the true physical sources and sinks. It is
convenient to express the sources and sinks in terms of timescales to allow comparison between different con-
servable quantities. It is then reasonable to argue that the conservation properties with the longest physical
source–sink timescales are the most important. Moreover, the physical source–sink timescale for any property
provides a benchmark against which to assess the magnitude of any imperfection in conservation; satisfactory
performance will require the timescale for spurious sources to be much longer than the physical source–sink
timescale (or much longer than the model integration time—conservation properties will be often more impor-
tant for climate simulation than for numerical weather prediction simply because of the longer timescale avail-
able for errors to accumulate and become significant). Sections 4–9 below discuss the roles of some
conservation properties in the global circulation, and estimates are made for the physical source–sink time-
scales to begin to address these questions.

4. Mass

Conservation of mass is arguably the most fundamental conservation property. Mass is a robust invariant,
conserved irrespective of diabatic or frictional processes. The true physical sources of dry mass are minute—its
timescale is, for practical purposes, infinite—so any imperfection in conservation of mass will eventually be
noticeable in a long enough integration. The mass distribution is intimately tied to the pressure distribution
through the equation of state, and spurious mass sources will lead to spurious motions. A systematic drift
in mass will imply a systematic drift in mean surface pressure, with numerous secondary effects. Moreover,
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many other conservation laws depend crucially on conservation of mass; failure to conserve mass will preclude
many other conservation properties. Conservation of mass of long-lived tracers (or families of tracers, such as
total reactive nitrogen or chlorine) is crucial for modelling atmospheric chemistry and composition. Moist
processes are strongly nonlinear and are likely to be particularly sensitive to imperfections in conservation
of water. Thus there is a very strong argument for requiring a dynamical core to conserve mass of air, water,
and long-lived tracers, particularly for climate simulation.

Currently most if not all atmospheric models fail to make proper allowance for the change in mass of an air
parcel when water vapour condenses and precipitates out. A typical formulation in terms of virtual temper-
ature implicitly replaces the condensed water vapour by an equal volume of dry air. This approximation
can lead to noticeable forecast errors in surface pressure during heavy precipitation, for example. However,
the approximation will not lead to a systematic long term drift in the atmospheric mass in climate simulations
provided there is no long term drift in the mean water content of the atmosphere.

5. Momentum and angular momentum

Angular momentum is a non-robust invariant: there is a finite exchange across the lower boundary even in
the large Reynolds number limit. However, unlike tracer variance and potential enstrophy (Section 6), it is
non-robust because of a spatial transfer to a boundary rather than a downscale transfer to some dissipation
scale.

The momentum equation is fundamental to atmospheric dynamics. However, on synoptic scales, its vertical
component is dominated by hydrostatic balance. Thus, spurious sources of vertical momentum are likely to be
important to the extent that they disrupt hydrostatic balance. The timescale for adjustment towards hydro-
static balance is of the order of the inverse of the buoyancy frequency N (a few tens of seconds, e.g. [4]) or
less. Therefore spurious sources of vertical momentum are likely to be significant if their timescale is compa-
rable to this or shorter. Similarly, in the extratropics the horizontal components of the momentum equation
are dominated locally by approximate geostrophic balance. Spurious sources of horizontal momentum are
likely to be significant if their timescale is comparable to or shorter than the inertial timescale 1/f (a few tens
of hours), which is the timescale for adjustment towards geostrophic balance.

On a global scale, however, the above argument does not apply to zonal mean angular momentum, and the
timescale for zonal mean angular momentum is much greater. Conservation of angular momentum is impor-
tant for the zonal wind strength, particularly midlatitude jets and trade winds as well as other features such as
the stratospheric winter vortex and Quasi-Biennial Oscillation. Through the Earth’s rotation, the angular
momentum budget is closely tied to the mean meridional circulation and its transport effects. It has been sug-
gested that the angular momentum budget might provide a crucial feedback helping to maintain climate sta-
bility [6]. The total angular momentum of the Earth’s atmosphere varies between about plus and minus
0.4 · 1026 kg m2 s�1 on a seasonal timescale. The total surface torque (friction plus mountain) is close to zero
but has a large eastward component in the tropics and a large westward component in the midlatitudes, both
of order 0.5 · 1020 kg m2 s�2 [51]. Thus the global time scale for atmospheric angular momentum is about
10 days. If imperfections in angular momentum conservation in a numerical model acted on timescales com-
parable to this then they would have a significant effect on the global angular momentum budget. Note, how-
ever, that in some regions of the atmosphere the angular momentum timescale is locally much longer. It is of
order two years in the tropical lower stratosphere, associated with weak wave-induced angular momentum
flux convergence. Thus, even quite small errors in the angular momentum budget could compromise the sim-
ulation of the Quasi-Biennial Oscillation, and the difficulty of obtaining a realistic simulation of the Quasi-
Biennial Oscillation in climate models reflects this.

6. Tracer variance and potential enstrophy

Correct tracer variance and potential enstrophy budgets are important for maintaining correct variability in
models. Potential enstrophy budgets for the atmosphere do not appear to have been computed. However, ens-
trophy budgets based on analyses [35,61] should give useful estimates for its sink timescale. These suggest a
globally averaged enstrophy of order 10�9 s�2 and a globally averaged downscale enstrophy transfer of order
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10�15 s�3, implying an enstrophy sink timescale of order 10 days. This timescale is comparable to an eddy
turnover timescale, as might be expected from naive scaling arguments. A similar timescale might be expected
for the downscale transfer of tracer variance. Some support for this is given by calculations of ‘‘mixdown
time’’ for atmospheric tracers [65,30], which do indeed suggest a timescale of order 10–20 days for the lower
stratosphere.

In the rest of this section two related arguments are made against attempting to conserve tracer variance in
a dynamical core. The first is that the quantity diagnosed as variance in a numerical model is not the total
variance but only the resolved contribution. The second is that variance inevitably cascades to small scales
and must eventually be dissipated in any realistic flow. Similar arguments apply to other moments of the tracer
distribution and to potential enstrophy on horizontal scales smaller than the Rossby radius.

Let the total mass of a tracer be
M ¼
Z

qvdx; ð7Þ
and also consider
R ¼
Z

qv2 dx: ð8Þ
(R is equal to the variance plus a constant when M and mass of air are conserved). In the absence of sources
and sinks both M and R will be conserved. In a finite volume discretization the natural prognostic variables
are the volume-weighted cell-average density
�qi ¼
R

cell i qdxR
cell i dx

¼ li

vi
; ð9Þ
(where i is the cell index) and the mass-weighted cell-average tracer
evi ¼
R

cell i qvdxR
cell i qdx

¼ mi

li
: ð10Þ
Then the contribution from cell i to the total mass of tracer can be expressed simply in terms of prognostic
variables
mi ¼
Z

cell i
qvdx ¼ �qievivi; ð11Þ
and it is clear what constraint the prognostic variables must satisfy in order to conserve the total mass of tra-
cer. On the other hand, the contribution to R from cell i is
ri ¼
Z

cell i
qv2 dx: ð12Þ
Write v in terms of the cell-average value and a departure from that cell-average value: v ¼ evi þ v0. Then
ri ¼ �qiev2
i vi þ

Z
cell i

qv02 dx: ð13Þ
The first term on the right is the resolved contribution to ri while the second term is the unresolved contribu-
tion. There is no justification for demanding that only the resolved contribution

P
i�qiev2

i vi should be conserved.
Instead, the resolved contribution should be allowed to change, and such changes should be interpreted as
exchanges between resolved and unresolved contributions. The above argument easily generalizes for the con-
servation of any quantity that is a nonlinear function of the prognostic variables (but note that we can con-
sider momentum

P
i�qieui and the internal contribution to energy cv

P
i�qi
eT i as analogous to tracer mass, so that

these quantities can be entirely resolved).
In any realistically complex flow there is a systematic downscale transfer of tracer variance and potential

enstrophy: in an initial value problem their spectra shift systematically towards larger wavenumbers as advec-
tion by straining flow draws out tracer and PV features into long thin streamers. This transfer implies that
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these conserved quantities are not robust; in any real physical situation the variance or potential enstrophy
must inevitably be transferred to scales at which dissipation will become important, and then they will no
longer be conserved. Moreover, the downscale transfers of variance and potential enstrophy act across a con-
tinuous range of scales, i.e. they are cascades, or class (ii) transfers in the terminology of Section 1.

The downscale cascades of tracer variance and potential enstrophy imply systematic transfers from resolved
scales to unresolved scales. The implication is that a dynamical core should not attempt to conserve only the
resolved contribution, but should allow the resolved contribution to decrease, and this decrease should be
interpreted as a transfer to unresolved scales, with the understanding that it would ultimately be dissipated.

Similar arguments apply to the PV-contour mass and circulation integrals MðQÞ and CðQÞ. They too are
non-robust; they are changed by the generation and eventual mixing of small-scale PV features. For similar
reasons, pseudomomentum and pseudoenergy will be non-robust when waves become strongly nonlinear
and break, leading to irreversible mixing.

It should be clear from the above argument that a scheme that conserves the resolved variance or potential
enstrophy must behave badly in realistic flows. On well-resolved scales there will be a transfer to smaller scales,
but near the grid scale this transfer would be halted and variance would build up near the grid scale, leading to
a noisy solution, a process known as ‘‘spectral blocking’’.

If we accept that a dynamical core should allow the resolved tracer variance and potential enstrophy to
decrease, to represent the cascade to unresolved scales, two strategies are then possible. The first is to use a
numerical scheme that conserves the resolved variance or potential enstrophy, but supplement it by an explicit
scale-selective dissipation (see Section 1). One difficulty of this approach is that the cascade operates across a
continuous range of scales, and there is no ‘spectral gap’ between scales to be resolved and scales to be param-
eterized. Another is that the scale-selective dissipation must be tuned, depending on the grid scale and on the
flow regime, to ensure that the dissipation length scale is not smaller than the grid scale (to prevent the build-
up of noise) but not much larger than the grid scale (to prevent excessive smoothing). See e.g. [60,67] for some
related discussion. The second strategy is to use an advection scheme that is accurate but inherently sufficiently
dissipative (i.e. variance reducing) near the grid scale to prevent the build-up of grid-scale noise. This strategy
is possible provided the cascade is driven by well-resolved scales while small scales are essentially passive. Odd-
order finite volume schemes, supplemented by some form of ‘‘limiter’’ to prevent spurious oscillations, seem to
work well in this respect [62], and have the advantage that they automatically ensure a near-optimal dissipa-
tion scale without flow-dependent tuning. Similar arguments should apply to semi-Lagrangian schemes with
even-order interpolation (i.e. such that the advection scheme overall is odd-order and the leading truncation
error is dissipative rather than dispersive, e.g. [45]). Whichever strategy is adopted, some representation of
subgrid processes is then built into the dynamical core.

Note that the emphasis in this discussion is on representing the transfer of tracer variance from resolved to
unresolved scales, rather than representing the ultimate molecular diffusive dissipation of tracer variance; of
course the rates of the two processes should be equal when averaged over time and space, provided no other
process changes the sub-grid scale tracer variance. Note also that, although the ultimate dissipation of tracer
variance is a real physical process, we do not insist that it must be represented by a corresponding physical
parameterization. An explicit scale-selective dissipation could be interpreted as such a parameterization (or,
rather, a parameterization of the resolved to unresolved scale transfer). On the other hand, a suitably formu-
lated dynamical core appears to be able to represent the resolved to unresolved scale transfer at least as well.

One final remark is appropriate. Although theories of two-dimensional and geostrophic turbulence, and
discussions of conservative numerical schemes, pay great attention to conservation of potential enstrophy,
there is virtually no discussion of why potential enstrophy, rather than any of the other, infinitely many,
g(Q) should be accorded such special status.

7. Energy

The energy of the atmosphere is made up of total potential energy (internal plus potential) and kinetic
energy contributions. Total potential energy (about 3 · 109 J m�2) is about 2000 times greater than kinetic
energy (about 1.5 · 106 J m�2). At first glance this suggests that the conservation question should focus pri-
marily on the total potential energy component. Certainly the total potential energy is important for the global
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mean temperature, and hence for other basic features such as atmospheric water content and its consequences.
However, correct handling of the kinetic energy budget is crucial for capturing the dynamics, including the
strength of weather systems, midlatitude jets, and other features of meteorological interest, and cannot be
ignored. In addition, the total potential energy can be divided into available and unavailable components.
For any atmospheric state, a corresponding reference state can be defined by minimizing the potential energy
under adiabatic air parcel rearrangements (i.e. rearrangements that conserve all FðhÞ). The difference between
the actual potential energy and the reference state potential energy is called the available potential energy, and
is an upper bound on the potential energy that could be converted to kinetic energy by adiabatic dynamics. (In
a more rigorous treatment additional constraints should be included, namely that PV must also be rearranged
or mixed but not unmixed [16]; however, the calculation is then much more difficult and has not been done yet
for realistic atmospheric states.) The unavailable part of the potential energy is typically 500 times greater than
the available part (e.g. [51]). Moreover, the unavailable part is a function only of the FðhÞ and so is conserved
separately from the total energy provided the FðhÞ are conserved.

The total energy throughput of the climate system is about 240 W m�2, not counting reflected solar radi-
ation, implying a timescale for total energy of about 150 days. Errors in total energy conservation significant
compared to 240 W m�2 could lead to significant errors in global mean temperature.

The throughput of available energy (available potential plus kinetic) is of order 1.8 W m�2 [51], implying a
timescale for available energy of about 20 days. GCM experiments [5] show a baroclinic eddy spin-down time-
scale of about 15–20 days after radiative forcing is switched off, consistent with this estimate. Errors in the
available energy budget significant compared to 1.8 W m�2 could lead to significant errors in the strength
of weather systems, midlatitude jets, etc.

To what extent do the arguments of Section 6 apply also to energy? In nearly all model formulations energy
itself is not a model prognostic variable but is given by a nonlinear combination of prognostic variables.
Therefore the total energy, like tracer variance, will have resolved and unresolved contributions. However,
if temperature is a prognostic variable and a height-based vertical coordinate is used then only the relatively
small kinetic component of the total energy has unresolved contributions. There can be a transfer of kinetic
energy to small and unresolved scales, with frictional heating eventually reintroducing the energy as internal
energy on resolved scales. The key question then is: ‘‘What fraction of the energy throughput is involved in a
downscale cascade to unresolvable scales?’’ If the cascade is insignificant then attempts to conserve the
resolved energy are justified. Many model development efforts have assumed that it is justified (e.g.
[10,3,59,55]). If, however, the cascade is significant compared to the available energy budget then it might
be appropriate to treat available energy in a similar way to potential enstrophy, with the dynamical core pro-
viding a sink to represent the cascade to unresolved scales. If the cascade to unresolved scales is significant
compared to the total energy budget then the cascade rate should be diagnosed and fed back into the internal
energy on resolved scales.

It will be argued in Section 8 that FðhÞ, and hence the unavailable potential energy, have no significant
downscale cascade. Hence there is a strong argument for attempting to conserve the unavailable potential
energy in a numerical model, even if the available energy is not conserved.

Almost all of the available energy throughput is eventually dissipated by molecular viscosity after a transfer
to small scales. Therefore the available energy is non-robust. However, by far the largest part of this dissipa-
tion, of order 1–2 W m�2, occurs in boundary layer turbulence. The energy is transferred directly from the
large-scale barotropic flow to the scale of the boundary layer eddies, i.e. the transfer is a class (i) process in
the terminology of Section 1. Such a process must be parameterized in numerical models, and the models,
in effect, see the dissipation occur on resolved scales rather than via a cascade. (In a large-eddy model of
the boundary layer, however, this would be a class (ii) process.) In the free atmosphere there will be dissipation
in three-dimensional turbulence generated by shear instability and gravity wave breaking, for example in
fronts and elsewhere; again these are class (i) processes and should be parameterized in models (though they
can only be parameterized if the need for the dissipation can be identified from resolved scale flow). Finally,
there may be a contribution in the free atmosphere associated with a downscale cascade of energy by layerwise
two-dimensional vortex interactions and nonlinear wave interactions. This final contribution should be han-
dled by the dynamical core, either explicitly by a scale-selective dissipation term or implicitly by the numerics.
Some estimates for its magnitude are given below.
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Aircraft observations [49,13,14] have been used to construct kinetic energy spectra over wavelengths from
about 1 km to 10,000 km. They show a spectral slope close to k�3 on synoptic scales with a smooth transition
to a k�5/3 spectrum on scales less than 100 km, where k is the horizontal wavenumber. The k�3 part of the
spectrum has been interpreted as evidence for a potential enstrophy cascade (though it does not appear to
be in an inertial range—see below). Various explanations for the k�5/3 part of the spectrum have been put for-
ward, including a downscale energy cascade associated with interacting gravity waves [19], an upscale energy
cascade associated with layerwise two-dimensional turbulence forced by small-scale processes such as convec-
tive anvil outflows [40], and a downscale energy cascade associated with geostrophic turbulence [68]. Each of
these theories relates the slope of the energy spectrum E(k) to the spectral energy flux e by a formula
EðkÞ ¼ Ce2=3k�5=3; ð14Þ

where C is a constant of order unity (possibly different for the different theories). Fitting the aircraft data to
(14) suggests a spectral energy flux of order 10�5 m�2 s�3 (about 0.1 W m�2 in a vertical integral), though the
amplitude of the spectrum does not determine the direction of the flux.

Global analyses can be used to diagnose not just the kinetic energy spectrum but also the spectral kinetic
energy and enstrophy fluxes, and, as residuals, the spectral distribution of sources of kinetic energy and ens-
trophy [35,61]. They show a sink of kinetic energy on large scales (n 6 10 where n is the global wavenumber,
due to surface drag), a source of kinetic energy over a broad range of intermediate scales (10 6 n 6 40–50, due
to baroclinic instability), and a sink of kinetic energy at small scales (n P 40–50). There is no range of scales
over which the sources and sinks are negligible, implying that a true inertial range does not exist. The analyses
also show a relatively large upscale kinetic energy flux (of order 5 · 10�5 m�2 s�3 or 0.5 W m�2) peaking
around n = 5–10 and a smaller downscale kinetic energy flux (of order 0.5–1 · 10�5 m�2 s�3 or 0.05–
0.1 W m�2) at wavenumbers around n = 40–60. Note, however, that these analyses are limited by their finite
resolution (T60 or T106), and the details of the energy spectrum and spectral fluxes at high wavenumbers are
sensitive to the truncation of the data. Also, the analyses show no sign of the k�5/3 part of the spectrum seen in
aircraft data. Note also that these analyses examine only the rotational contribution to the kinetic energy and
its flux. Very high resolution GCM simulations [36] suggest that the divergent and rotational contributions
become comparable for n greater than about 100 (subject to the usual caveats about the ability of a GCM
to avoid excessive generation or excessive damping of small-scale unbalanced motions).

The magnitude and direction of the spectral energy flux on the mesoscale can be estimated from aircraft
data by computing third order velocity structure functions such as Ædududuæ, where du is the velocity difference
over a displacement r [12,42]. Data in the lower stratosphere strongly suggest a downscale energy cascade on

length scales between 10 and 100 km, of magnitude about 6 · 10�5 m�2 s�3 (about 0.6 W m�2 in a vertical
integral if the same value is applicable throughout the troposphere). The tropospheric data are more difficult
to interpret. Also, the data analysis does not clearly distinguish whether the flow on these scales is predomi-
nantly turbulent or wavelike. Other data, using aircraft [34] or Doppler radar [11], suggest that local energy
dissipation rates in frontal regions can be two to three orders of magnitude greater than the above estimate.

In summary, there is some evidence for a downscale energy cascade across a wide range of scales shorter
than a few hundred kilometres, of order 10�5 m�2 s�3 (about 0.1 W m�2 in a vertical integral) or a few times
this. This amounts to about 5–10% of the available energy throughput. In principle this argues against
attempting to conserve exactly the resolved available energy. In practice, however, typical dissipation rates
in climate models, due to explicit or inherent scale-selective dissipation are 1–2 W m�2 [69], which is an order
of magnitude greater than the estimated downscale cascade in the real atmosphere. Moreover, it is not usual in
most models to diagnose this energy sink and return the energy to the resolved scales in the form of heat. Thus
there appears to be considerable scope to improve the handling of available energy in climate models.

8. Entropy

For adiabatic frictionless flow, there are infinitely many conservation laws of the form (1) with A = qf(h), of
which entropy f(h) = g = Cp lnh is just one. These imply an infinite set of global invariants

R
qf ðhÞdx. An

equivalent infinite set of invariants includes the mass per unit h in each isentropic layer FðhÞ ¼R
q=jrhjdA. Unlike energy, entropy (or any other f(h)) is transported only by advection and is therefore con-
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served separately in every air mass; this is why there are infinitely many entropy-related conserved quantities
but only one conserved energy.

For adiabatic frictionless flow, entropy itself has no special status compared with any of the other possible
f(h) that might be considered. This can easily be seen by noticing that the mass per unit f(h) in any isentropic
layer is just a constant times the mass per unit h in the same layer
Z

q
jrf ðhÞj dA ¼ 1

f 0ðhÞ

Z
q
jrhj dA; ð15Þ
so that any f(h) is as good as any other. However, when diabatic processes, including mixing, are introduced
then entropy does have special status—see below.

In large parts of the atmosphere vertical mixing is weak. This is because the free atmosphere is strongly stably
stratified and, moreover, h itself (or any f(h)) determines the stratification. This, in turn, inhibits vertical mixing
between isentropic layers (much more strongly than PV gradients inhibit horizontal mixing). In these regions the
FðhÞ are robust invariants. In other regions, small-scale mixing by the boundary layer, shear instability, gravity
wave breaking, etc., can modify theFðhÞ even in the adiabatic frictionless limit. However, these mixing processes
are class (i), in the terminology of Section 1, involving very small three-dimensional eddies; the FðhÞ do not cas-
cade from large to small scales. This argues for attempting to conserve FðhÞ in dynamical cores.

There is a small source for FðhÞ, which would still exist in the adiabatic frictionless limit, associated with
the small downscale cascade of available energy (Section 7), of order 10�5 m�2 s�3, and its ultimate dissipation
and conversion to heat. However, the implied h tendency is of the order 10�3 K day�1, which is negligibly
small compared to realistic diabatic heating.

Conservation of entropy-related quantities is physically important in at least two ways. First, the distribu-
tion of mass as a function of h determines the unavailable component of the total potential energy, as dis-
cussed in Section 7. The unavailable part of the potential energy is typically 500 times greater than the
available part (e.g. [51]). Moreover, the unavailable part is a function only of the FðhÞ and so is conserved
separately from the available energy, and is not involved in a downscale cascade, as argued above. Hence there
is a strong argument for attempting to conserve the unavailable potential energy in a numerical model, even if
the available energy is not conserved.

Second, any failure to conserve entropy in a numerical model is likely to be in the form of a systematic spu-
rious entropy production, because of the tendency of numerical schemes to mix rather than unmix [32,22],
though numerical schemes can unmix too [64,73]. It has been suggested [32] that, in order to balance both
the energy and entropy budgets in the presence of spurious entropy sources, a numerical climate model will
adjust to a state that has a systematic cold bias, particularly in the lower tropical troposphere and near the
high-latitude tropopause.

Some recent work [73] found that in an ‘‘adiabatic’’ baroclinic wave life cycle, simulated using a standard
sigma-coordinate spectral model, there were large local spurious sources and sinks of entropy with a small
positive residual of around 0.4 mW m�2 K�1. They also found that the net numerical generation of entropy
depended only weakly on model resolution and on the timescale specified for scale-selective dissipation. A
plausible interpretation is that to a large extent the entropy production is inevitable and is driven by the
large-scale flow, and occurs when modelled features collapse to the model’s dissipation scale, whatever that
scale is. In reality the dissipation and entropy production mechanisms would be different and would occur
on smaller scales, but the overall entropy production might be similar.

The global mean irreversible entropy sources in the real atmosphere [50,25] are estimated to be of order
20 mW m�2 K�1 for moist processes and of order 5–10 mW m�2 K�1 for turbulent and dissipative processes.
(It is difficult to re-express these values as timescales because it is not obvious what to take as the reference
value for entropy.) However, in the absence of sources and sinks entropy is conserved separately in every
air mass, so it is relevant to discuss local sources. These can be very much larger, or very much smaller, than
the global mean values. Conservation of entropy, and spurious numerical sources of entropy, are likely to be
particularly important where the true source is very small, e.g. in the tropical lower stratosphere where the
radiative timescale is very long and vertical mixing is very weak.

Finally, although entropy has no special status compared to other f(h) for purely adiabatic flow, it does
have special status when diabatic processes, including mixing, act. First, the relation
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T dg ¼ dq; ð16Þ

where q is diabatic heating and g is specific entropy, is simpler than any analogous relation involving f(h)
rather than g. More importantly, the entropy statement of the second law of thermodynamics (e.g. [18]) states
that the total entropy of a thermally isolated system can never decrease. For example, mixing processes in the
atmosphere, or radiative exchange between different parts of the atmosphere at different temperature, will al-
ways increase the total entropy. There is no similar expression of the second law of thermodynamics in terms
of other f(h) except those trivially proportional to the specific entropy.
9. Potential vorticity, and Lagrangian conservation

Because of its dynamically important Lagrangian conservation and invertibility properties, there are advan-
tages to diagnosing atmospheric flow in terms of PV (e.g. [31]). It is reasonable to expect improved model per-
formance from an accurate numerical treatment of PV (e.g. [7]).

In the literature most emphasis is on the Lagrangian conservation property (3) rather than the flux-form
(1). Accurate Lagrangian conservation of PV is crucial for correct simulation of the strength of weather sys-
tems such as fronts and cyclones. Even after PV features have been strained out into thin sheets and streamers
they can still be meteorologically active. Spurious generation of PV of the wrong sign could lead to spurious
instabilities.

The timescale for physical processes to change an air parcel’s PV is typically a few days in the free atmo-
sphere. Spurious numerical modification of PV needs to be slower than this to avoid damaging numerical solu-
tions. The simulation of a baroclinic wave life cycle has been studied [72] in a sigma-coordinate spectral model
with a standard vorticity-divergence formulation. A significant spurious amplification of PV maxima was
found in the upper troposphere, accompanied by a significant spurious increase in total potential enstrophy
on the relevant isentropic level. Such spurious amplification was absent in an isentropic-coordinate model that
directly predicted PV using a non-oscillatory advection scheme.

Accurate numerical treatment of some variable is most easily achieved by making that variable one of the
predicted variables, though there have been few attempts to do this in three-dimensional atmospheric models
with PV [27,39,48] except in balanced models. On the other hand, improved treatment of PV can be obtained
by careful treatment of the other variables in formulations based on wind components [3,41].

Accurate Lagrangian conservation of PV and other variables is obviously possible with Lagrangian numer-
ical schemes such as contour advection (e.g. [20]). In Eulerian models Lagrangian conservation cannot be cap-
tured exactly: there is unavoidable information loss as the fluid moves relative to the finite resolution grid.
However, certain properties implied by Lagrangian conservation, such as positivity and local boundedness
under advection, can be enforced, even while maintaining flux-form conservation. Lagrangian conservation
of long-lived tracers can be improved by the use of a Lagrangian or isentropic vertical coordinate [74,43]. With
Eulerian advection schemes Lagrangian conservation tends to improve with increasing order of accuracy of
the scheme (taking into account any explicit scale-selective dissipation needed with even order and spectral
advection schemes). Third order advection seems to be the minimum acceptable for weather and climate mod-
elling. Even then the inherent dissipation may be noticeable (e.g. [72]; a similar experience was found with the
cubic semi-Lagrangian scheme of the current operational version of the Met Office Unified Model UM5).
Where the Lagrangian timescale is very long, as in the stratospheric ‘‘tape recorder’’, a fifth or even seventh
order advection scheme might be needed for accurate simulation [28].

Certain thermodynamic quantities, such as equivalent potential temperature, are materially conserved, or
nearly conserved, even when phase changes of water take place. This Lagrangian conservation can be poorly
simulated in a numerical model if the conserved quantity is diagnosed from other prognostic variables rather
than directly predicted itself, especially if the other variables are not treated consistently—the example of
equivalent potential temperature has been discussed in depth [33]. Capturing the Lagrangian conservation
property in a numerical model can be improved by directly predicting the conserved variable in place of tem-
perature or potential temperature (e.g. [66]). However, retrieving the temperature from the predicted variables
then requires iterative solution of a transcendental equation, adding to the computational cost. Also, in prac-
tice, approximate versions of the conserved variables are usually used, and care must be taken to ensure that
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the approximation is sufficiently accurate (e.g. [52,9]). This type of approach is commonly used in cloud mod-
elling, but has received little attention in the context of weather prediction and climate modelling.

A further complication is that, even when predicting a materially conserved quantity and using a non-oscil-
latory scheme for advection, interaction between advection and condensation can lead to spurious oscillations
in temperature and moisture fields. The problem can be reduced by using specially formulated ‘‘limiters’’ that
account for the interaction between advection and condensation [26].

10. Which combinations of quantities can be conserved?

Given that a numerical scheme cannot possibly conserve all of the quantities conserved by the continuous
governing equations, an important question is ‘‘What combinations of quantities could a numerical model
conserve?’’ There seems to be no theory to provide a general answer to this question, but some comments
are offered in the following.

A straightforward way to ensure the conservation of some quantity is to make it a prognostic variable in a
flux-form finite volume discretization. However, atmospheric models use only a small number of prognostic
variables (though different choices are possible, for example temperature versus entropy, or momentum versus
vorticity and divergence). Any additional conservation properties must be obtained through some special
mathematical property of the discretization. For example, spatial discretizations can be found that conserve
(global integrals of) mass, energy and potential enstrophy as well as preserving an initial constant potential
vorticity [3]. Local mass conservation of long-lived tracers can be obtained via a flux-form finite volume dis-
cretization and at the same time boundedness of the tracer (implied by the Lagrangian conservation law) can
be guaranteed by carefully ‘‘limiting’’ the fluxes. A mass-conserving isentropic-coordinate model could con-
serve discrete analogues of FðhÞ independently in each model layer; these in turn would imply conservation
of a discrete approximation to the unavailable part of the potential energy.

As noted in Section 2, for the continuous equations conservation properties can be related to continuous
symmetry properties of the Hamiltonian. Unfortunately, an Eulerian discretization destroys the continuous
symmetry, so there does not appear to be a way to exploit symmetry properties to develop conservative dis-
cretizations [57]. However, conservation properties can also be derived via a Hamiltonian Poisson-bracket
approach, and this approach can be used to obtain a systematic method of deriving conservative spatial dis-
cretizations [57]. There is certainly scope for further exploration of this approach.

For Hamiltonian systems another interesting approach to obtaining desirable conservation properties is
through the use of symplectic integration schemes. Such schemes are designed to preserve the symplectic struc-
ture in phase space, which provides strong constraints on the behaviour of the system. Symplectic schemes for
ordinary differential equations can be shown to give exponentially accurate conservation of energy over expo-
nentially long times [53]. The ideas can be extended to multi-symplectic schemes for partial differential equa-
tions. For linear Hamiltonian systems of a certain form, a multi-symplectic box scheme has been described [8]
that gives exact local conservation of energy and momentum. The authors claim that conservation is also
excellent (though not exact) for nonlinear systems.

Finally, it might be possible to obtain a greater number of conservation properties by moving to a fully
Lagrangian, rather than Eulerian, formulation. For example, a particle-mesh method for the shallow water
equations has been described [23,24]. By combining a Hamiltonian spatial discretization with a symplectic
time stepping algorithm the authors claim exact conservation of mass and excellent conservation of energy
and potential vorticity. If it is possible to overcome the traditional difficulties of fully Lagrangian methods,
associated for example with spatial irregularity and inhomogeneity of the particle distribution, then this
approach might prove attractive.

11. Conclusions

Conservation issues for atmospheric model dynamical cores should be addressed in the context of realistic
atmospheric flows. The relative importance of different conservation properties depends on the roles they play
in realistic circulations, and on the timescales for their corresponding physical sources and sinks. For this rea-
son, results of idealized test cases should be interpreted with care.



Table 1
Approximate source timescales for some conservable quantities, and indications of whether they are robust and whether they cascade to
small scales

Quantity Robust Cascade Approx. timescale

Mass Yes Infinite
Momentum Minutes to hours
Angular momentum 10 days (locally longer)
Potential enstrophy Yes 10 days
Tracer variance Yes 10 days
Unavailable energy Almost 150 days
Available energy Yes (5–10%) 20 days
Entropy Almost Variable
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We caution against dogmatic attempts to obtain exact conservation of everything possible. Some conser-
vation properties of the original equation set might no longer hold for the averaged equations that must be
integrated in practice. Also, for non-robust invariants that cascade downscale, numerical models must allow
for a transfer from resolved to unresolved scales, and conservation of only the resolved contribution might not
be appropriate. We do not insist that every non-conservative physical process be handled by a specific corre-
sponding physical parameterization. For example, the dissipation (or, rather, resolved to unresolved scale
transfer) of tracer variance can be handled adequately by a suitably formulated dynamical core.

Table 1 summarizes some of the discussion of the preceding sections. There is a very strong argument for
attempting to conserve mass; it is a truly robust invariant with, for practical purposes, an infinite source time-
scale. Strong arguments can also be made for attempting to conserve angular momentum, unavailable energy,
and FðhÞ; they have moderately long source timescales, at least locally, and, although not truly robust, are not
dissipated via downscale class (ii) cascades. Potential enstrophy and tracer variance, on the other hand, have
significant sinks via downscale cascades, and so, as noted above, a dynamical core must allow for the transfer
from resolved to unresolved scales.

Currently one of the most challenging conservation issues appears to be the handling of the available energy
budget. Around 5–10% of the available energy throughput cascades downscale (Section 7), and, as argued
above, could in principle be handled by the dynamical core. However, typical dissipation rates in climate mod-
els, due to explicit or inherent scale-selective dissipation are an order of magnitude greater [69]. A fundamental
difficulty appears to be that the types of scale-selective dissipation most commonly used, whether explicitly of
the form $2n or inherent in the numerical schemes (e.g. [45,62]), are essentially linear, with the damping at any
scale proportional to the amplitude of the damped quantity at that scale; then the ratio of energy dissipation to
enstrophy dissipation must scale roughly like the square of the grid length, if the dissipation is dominated by
near-grid scales. For current climate resolutions that ratio is of order 10�4 m2 s�3/10�15 s�3 = 1011 m2, which
is an order of magnitude too large. Higher order dissipation operators (e.g. [37]) can help ensure that the dis-
sipation is indeed dominated by near-grid scales, but cannot overcome the scaling law. The scaling argument
implies that the problem should be reduced as finer resolutions become affordable. Until then, it might be
desirable to consider more sophisticated schemes that reduce the ratio of energy dissipation to enstrophy dis-
sipation by nonlinearly coupling different scales [55], or reintroducing some energy on resolved scales through
some representation of the relevant spectral interactions or ‘‘backscatter’’ [35,58].
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